Genética Mendeliana

Genética clásica o mendeliana.-

Partiendo de los caracteres observables (fenotipo), comprueba su transmisión por herencia a los descendientes y a partir de aquí deduce el genotipo, es decir, el gen o genes que determinan dichos caracteres. Como material de estudio emplea especies animales y vegetales cuyos caracteres son directamente observables

Genética molecular.-

Ciencia que estudia el material hereditario (ADN) bajo cualquier nivel.

En genética molecular la metodología consiste en aislar fragmentos de ADN y localizar en él los genes que se quieren estudiar, para ello se hace necesario establecer la secuencia de bases nitrogenadas.

Podríamos decir que en este caso se parte del genotipo para llegar al fenotipo

En sentido estricto la genética es la ciencia que estudia los mecanismos de la herencia y las leyes por las que estos se rigen

Conceptos:

Genotipo .-

Es el conjunto de genes que pasee un individuo. En los seres diploides la mitad de los genes proceden de la madre y la otra mitad del padre.

<u>Gen</u>

Desde el punto de vista clásico, es la unidad estructural y funcional de la herencia, que se va transmitiendo de generación en generación

Es considerado también como la unidad de transcripción (hay genes que no se transcriben...)

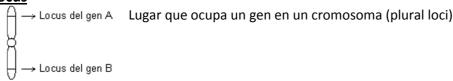
Fue considerado como unidad de mutación o como unidad de recombinación (hoy sabemos que la porción más pequeña de un gen que puede recombinar o mutar es el nucleótido)

Actualmente se considera como un fragmento de ADN que tiene información para mediante transcripción y traducción dar lugar a la síntesis de una cadena polipeptídica

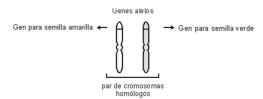
Fenotipo:

Es la manifestación externa del genotipo.

Es el resultado de la interacción del genotipo con el ambiente (el ambiente lo constituyen los otros genes, el citoplasma celular y el medio externo en el que se desarrolla el individuo).


<u>Genoma.</u> - es todo el material genético contenido en las células de un organismo en particular. Por lo general, al hablar de genoma en los seres eucarióticos nos referimos sólo al ADN contenido en el núcleo, organizado en cromosomas. Pero no debemos olvidar que también la mitocondria y el cloroplasto contienen genes

Carácter hereditario.-


Es cada una de las particularidades morfológicas o fisiológicas de un ser vivo.

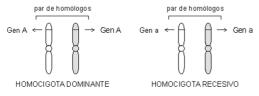
Los caracteres cualitativos presentan dos alternativas claras y están reguladas por un único gen que posee dos alelos en cada individuo. Los caracteres cuantitativos tienen diferentes grados entre dos extremos, generalmente depende de la acción acumulativa de varios genes. Los caracteres particulares son los propios de cada individuo

Locus

Alelos o alelomorfos:

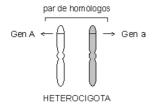
Genes que llevan dos o más informaciones alternativas sobre un mismo rasgo. Por ejemplo, en los guisantes, el rasgo color de semilla puede presentarse en dos alternativas: amarillo o verde.

Los alelos ocupan la misma posición (locus) en cromosomas homólogos y se separan durante la meiosis, de tal manera que se puede recibir cualquiera de ellos, pero no ambos.


Alelo dominante y recesivo:

En un individuo los dos alelos para un determinado rasgo pueden ser diferentes. Por ejemplo, una planta de guisante puede heredar un gen para semilla amarilla y el otro alelo para semilla verde, sin embargo la semillas que produce la planta son amarillas. En este caso uno de los alelos encubre los efectos del otro, ese alelo que se pone de manifiesto (gen para color amarillo) se llama dominante. El alelo que queda oculto no puede expresarse (gen para color verde) se denomina recesivo.

Al simbolizarlos se le asigna una letra mayúscula al gen dominante, y la correspondiente minúscula al alelo recesivo:


A= gen para el alelo dominante a= gen para el alelo recesivo

Homocigoto:

→ Gen a Es lo que Mendel llamaba raza pura. Si los dos genes que gobiernan un rasgo son iguales (ambos dominantes o ambos recesivos), el individuo que los porta se denomina **homocigoto** para ese rasgo.

Heterocigoto:

Es lo que Mendel llamaba híbrido. Si los dos genes que gobiernan un rasgo son distintos (uno dominante y otro recesivo), el individuo que los porta se denomina **heterocigoto** para ese rasgo.

Teoría cromosómica de la herencia

Cuando Mendel realizó sus experimentos, no se conocía la existencia de la molécula de ADN ni, por tanto, que lo que el llamaba factores hereditarios se encontraban en los cromosomas

En 1902, Sutton y Bovery observaron la relación entre los cromosomas y la herencia y propusieron que las partículas hereditarias (hoy llamadas genes) se encuentran en los cromosomas, dispuestas una a continuación de otra. Ésta fue la primera formulación de la teoría cromosómica de la herencia, demostrada por Morgan (1915)

La concretaremos en cinco puntos:

- 1) Las unidades determinantes de los caracteres hereditarios o genes se encuentran situados en los cromosomas
- 2) Cada gen ocupa un sitio determinado llamado locus (plural loci) dentro de un cromosoma determinado
- 3) Los distintos loci se encuentran ordenados linealmente (uno al lado del otro) en los cromosomas
- 4) Los genes alelos se encuentran en el mismo locus de la pareja de cromosomas homólogos, por lo que en los organismos diploides cada carácter viene determinado por al menos dos genes
- 5) Existe una correspondencia biunívoca entre el fenómeno de intercambio de fragmentos cromosómicos durante la meiosis y la herencia

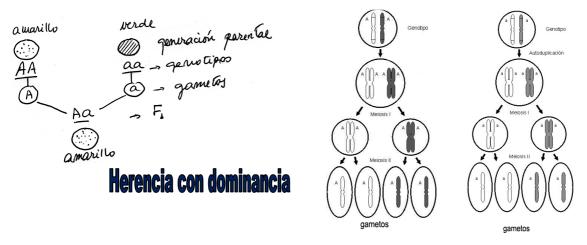
Trabajos y experimentos de Mendel

Gregor Mendel cuando publicó sus descubrimientos, pasaron durante largo tiempo desapercibidos. Se desconocía en su época todos los aspectos relacionados con el ADN, cromosomas, meiosis, etc.

En 1910 (34 años después de su publicación) fueron redescubiertos y hoy las leyes llevan su nombre

Actualmente conocida la naturaleza de los genes y el comportamiento de los cromosomas en la meiosis resulta fácil explicar el porqué de los resultados de Mendel. Antes de Mendel se intentaba estudiar lo herencia de los caracteres todos al mismo tiempo y no se llegaba a resultados

El éxito de Mendel se debió por una parte a la elección del material y por otra a los caracteres que seleccionó para su estudio

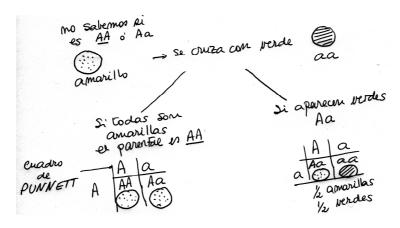

- Eligió como material el guisante de jardín (*Pisum sativum*). Es una planta que permite controlar fácilmente el proceso de polinización, se puede cultivar fácilmente y se pueden obtener varias generaciones al año pues tiene un ciclo vital corto y un número de desconsientes alto. Las flores son autofecundables por lo que se pueden conseguir razas puras
- > Seleccionó caracteres antagónicos, es decir, con sólo dios alternativas: amarillo-verde; liso- rugoso, tallo alto-tallo enano; posición de flores: apical-lateral, etc.
- Registró los datos obtenidos y aplicó análisis estadístico

Primera ley de Mendel: ley de la uniformidad de los híbridos de la primera generación filial.

Cuando se cruzan dos razas puras (homocigóticas) que difieren en un solo carácter (generación parental), todos los individuos de la primera generación filial (F₁) son iguales entre sí

Mendel autofecundó plantas de semilla color amarillo y obtenía siempre plantas color amarillo. Lo mismo hizo con plantas semilla color verde. Ambas razas las denominó puras (hoy diríamos homocigóticas) Cruzó entre sí las dos variedades puras y les llamó **generación parental.**

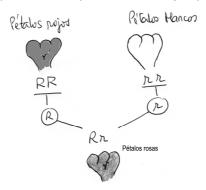
Obtuvo una descendencia que llamó F1 en las que todas las plantas eran de semilla color amarillo



El gen que aparece se llama dominante (A) y el que queda oculto recesivo (a)

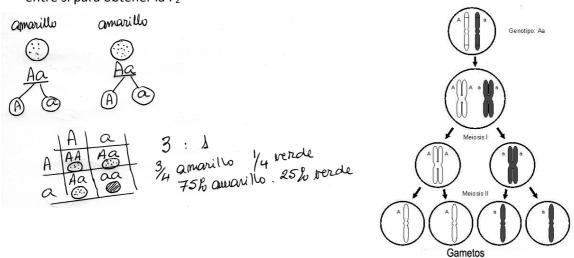
Retrocruzamiento prueba

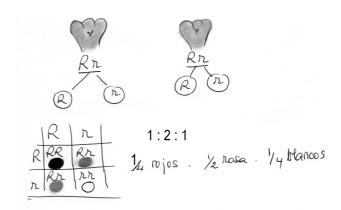
Cómo podríamos determinar el genotipo de una planta con se milla color amarillo que podrá ser AA o Aa


Para ello se cruza la planta con la variedad homocigótica recesiva, la planta con semilla color verde que sabemos que es aa

Herencia intermedia o con codominancia

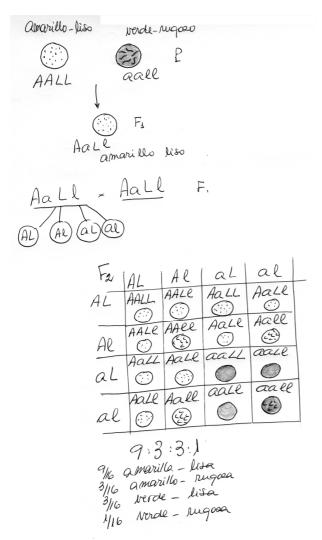
En este caso el híbrido (heterocigoto se caracteriza porque los dos alelos tienen la misma fuerza, el individuo muestra un fenotipo intermedio entre los que tiene el individuo AA y el aa.

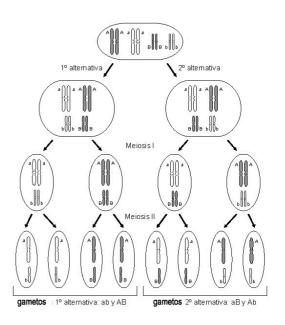

Ambos alelos se dice que son "equipotentes" aunque se sigue empleando las letras mayúsculas y minúsculas Es ejemplo el color de los pétalos de la planta *Mirabilis jalapa*


Segunda ley de Mendel o de la segregación independiente de la segunda generación filial.

Cuando se cruzan entre si los híbridos (heterocigotos) de la F_1 , se obtiene la F_2 , en la que aparecen los fenotipos que parecían habían desaparecido en la F_1 y además en proporciones fijas

Supongamos que partimos de los guisantes amarillo que se habían obtenido en la F_1 . Vamos a cruzarlos entre sí para obtener la F_2




Realizamos lo mismo con Mirabilis jalapa

Tercera ley de Mendel o ley de la independencia o libre combinación de los genes (es una consecuencia de la segunda)

Los alelos mantienen su independencia a través de las generaciones combinándose al azar de todas las maneras posibles en la descendencia

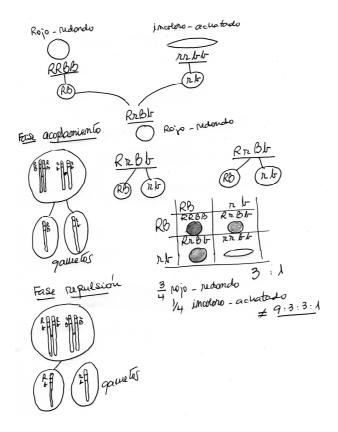
Ligamiento y recombinación

Se dice que dos loci están ligados cuando se encuentran situados sobre el mismo cromosoma. Todos aquellos loci que se encuentran situados sobre el mismo cromosoma forman un Grupo de Ligamiento.

Las proporciones de Mendel se cumplen siempre que analicemos caracteres cuyos genes se localizan en cromosomas distintos, dicho de otra forma, los genes se transmiten independientemente siempre y cuando pertenezcan a distintos grupos de ligamiento

Cuanto más alejados están entre sí dos loci ligados, más probable es que se dé sobrecruzamiento entre ellos (ligamiento parcial), cuanto más cerca están entre sí dos loci ligados menos probable es que se dé sobrecruzamiento entre ambos (ligamiento total)

Ligamiento total


Lo comprenderemos con un ejemplo:

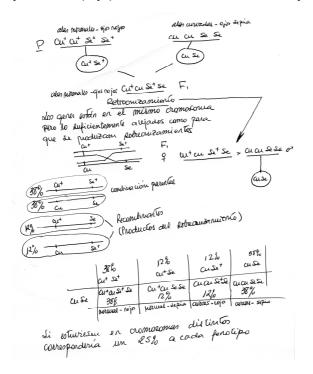
En el maíz existen dos variedades que se distinguen por el color y el tamaño del grano

El gen R determina color rojo y domina sobre el gen r que determina fenotipo incoloro

El gen B determina forma redonda y es dominante sobre el b que determina forma achatada

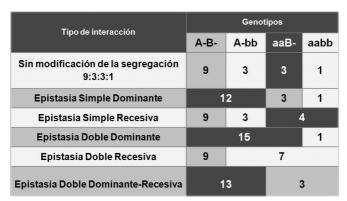
Lo veremos con un ejemplo en el que los dos genes están lo suficientemente cercanos como para que no se produzca sobrecruzamiento

Ligamiento parcial

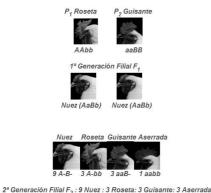

Cuando hay ligamiento parcial debemos considerar que en algunas células habrá crossing over y recombinación y otras donde no lo haya. Por lo tanto el porcentaje de gametos que tienen nuevas combinaciones o recombinantes siempre es más bajo que el porcentaje de gametos con la combinación original o parental

Lo vemos con un ejemplo:

En Drosophila hay dos genes que afectan a la coloración de los ojos y al tamaño de las alas:


Cu⁺ alas normales dominante de cu alas curvadas

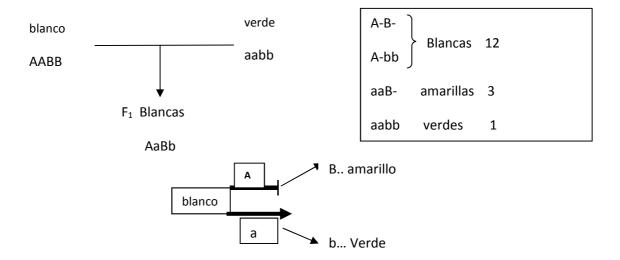
Se⁺ color de ojos normal (rojo) dominante sobre se color de ojos sepia



Segregaciones que parecen excepciones a las leyes de Mendel, pero que se deben a interacciones génicas

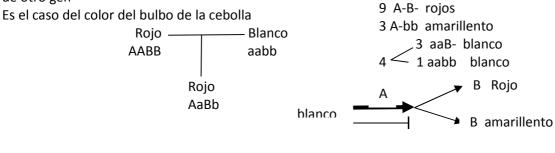
La interacción génica se puede definir como la influencia mutua entre alelos del mismo locus o alelos de diferentes loci. Vamos a suponer que el carácter analizado está controlado solamente por dos loci: A,a y B,b. La segregación de dos loci independientes en la descendencia del cruzamiento de dos diheterocigotos (AaBb x AaBb) es 9AB:3Ab:3aB:1ab, pero como consecuencia de las interacciones entre los alelos, dicha segregación puede modificarse.

1.- Segregación 9:3:3:1 con fenotipos nuevos



2 Generation Final F2 . 9 Nuces . 3 Noseta. 3 Guisante. 3 Aserrada

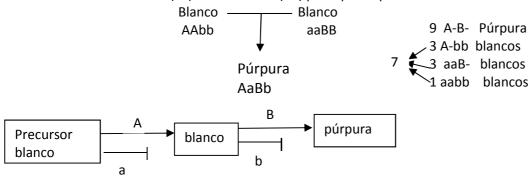
Epistasia.- La presencia de un alelo en un locus determina la no manifestación del otro alelo situado en un locus de otro cromosoma. El gen que suprime al otro se llama **epistático** y el suprimido **hipostático**


2.- Epistasia simple dominante (12: 3: 1)

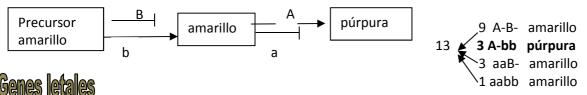
El alelo dominante de uno de los dos loci (por ejemplo el alelo **A**) suprime la acción de los alelos **B** y **b** del otro locus. Color de la calabaza

3.- Epistasia simple recesiva (9:3:4)

Es una interacción génica producida por la acción de un gen cuyos alelos recesivos impiden la expresión fenotípica de otro gen

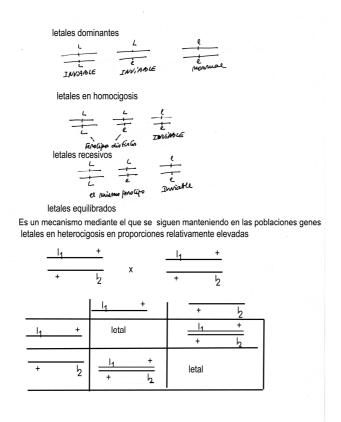


4.- Epistasia doble dominante o Genes duplicados o Dominantes duplicados (15:1)


5.- Epistasia Doble Recesiva o genes complementarios (9:7)

Producida por la doble acción de los alelos recesivos sobre cualquier otro alelo, basta en coincidir en el genotipo los alelos recesivos en la forma (aa) o en la forma (bb) para que se produzca el enmascaramiento

6:- Epistasia doble dominante recesiva (13:3)


Un ejemplo de ello es el carácter que controla la producción de granos de maíz púrpuras o amarillos. Dos loci independientes controlan el color del maíz, el alelo dominante A produce pigmento púrpura, y el alelo a lo produce amarillo. El alelo B del locus B,b, es un inhibidor de la pigmentación, pero el b no lo inhibe.

Un gen letal es un gen cuya expresión produce la muerte del individuo antes de que este llegue a la edad reproductora. Si la expresión de un gen en vez de causar la muerte del individuo causa un acortamiento de su ciclo biológico, un empeoramiento de su calidad de vida o algún daño en su organismo, se denomina gen deletéreo

Hay genes letales que son:

- _ No condicionales: Cuando cualquiera que sean las circunstancias del ambiente externo o del resto del genotipo, no influye. Son letales en sentido estricto
- _Condicionales: en ellos influyen los factores ambientales o el resto del genotipo

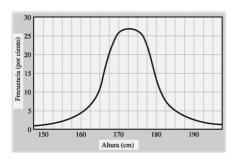
Pleitropía: es el fenómeno por el cual un sólo gen es responsable de efectos fenotípicos o caracteres distintos y no relacionados. Ejemplo de ello es la fenilcetonuria, para la cual un único gen varía la producción de una enzima, y esto produce deficiencia intelectual, problemas en la coloración de la piel, etc.

Alelismo múltiple. Series alélicas

Aunque en un individuo hay dos alelos en la determinación de un carácter, en una población puede haber más de dos alelos que influyan en un carácter. Tomándolos todos tendríamos una serie alélica

Un ejemplo sería la herencia de los grupos sanguíneos

	Grupo A	Grupo B	Grupo AB	Grupo O	
1	4	B	AB		
Anticuerpos	1	1		1414	
	Anti-B	Anti-A	Ningunos	Anti-A y Anti-B	
Antígenos	₱ A antígeno	† B antígeno	● ◆ A y B antigeno	No antígenos	
IA IA / IA -Grupo A					


Grupo AB

Grupo O

Color de pelaje de los conejos. Los alelos de esta serie son C (color total), c^{ch} (chinchilla color grisáceo), c^h (Himalaya, albino con extremidades negras) y c (albino. En esta serie cada color es dominante al que le sigue en este orden $C > c^{ch} > c^h > c$.

Fenotipo del color del pelaje	Genotipos	
Color total	CC ó Cc ^h ó Cc ^{ch} ó Cc	
Chinchilla	cchcch, cchch, cchc	
Himalaya	c ^h c ^h , c ^h c	
Albino	cc	

Herencia poligénica o multifactorial

Intervienen varios genes localizados en diferentes **locus** y diferentes cromosomas, generalmente de acción débil pero aditiva, o sea que se va sumando una por una, la acción leve de cada uno de los genes que intervienen. A esto hay que agregar la marcada influencia de los factores externos y ambientales, para que puedan aparecer las alteraciones.

La Herencia Poligénica tiene también una evidente participación en muchas de las características fisiológicas del ser humano, tal como la estatura, el peso, el color del cabello, la inteligencia, el parecido familiar, la configuración de los dermatoglifos, y se le puede definir como una "tendencia" fisiológica o

patológica, pero siempre regida por el efecto aditivo de los múltiples genes de acción débil y circunscrita, que intervienen, condicionados por las influencias no genéticas del medio ambiente. Los individuos presentan una "tendencia" a determinadas características como por ejemplo: tendencia a padecer de hipertensión arterial, cáncer, etc.

Las numerosas combinaciones que un conjunto de genes determina una gradación en los fenotipos; es típico de caracteres cuantitativos, es decir, que se pueden medir con alguna unidad de medida (peso, altura, longitud de las patas, número de granos por espiga, número de huevos, litros de leche, etc.). También se debe a este tipo de herencia el color de la piel en nuestra especie, por eso existen tantas posibilidades y tanta variación del color de la piel entre blancos y negros

En humanos se observa en:

Altura, lupus Eritematoso Sistémico, peso, color de ojos, inteligencia, color de la piel , muchas formas de comportamiento

Los fenotipos intermedios suelen ser más frecuentes

Herencia del sexo o determinación del sexo

Como ya hemos indicado_r para que haya reproducción sexual, no *es* necesaria que haya sexo, sin dos tipos de gametos funcionalmente distintos

Sexo.-

Características de los individuos que producen un sólo tipo de gametos y se diferencian de la otra clase de individuos de esa misma especie que produce el otro tipo de gametos Podemos considerar el sexo como un fenotipo es decir, genotipo más ambiente

Sexo genético.- es lo que realmente lleva el genotipo

Sexo somático.- Son los rasgos que diferencian al individuo de uno u otro sexo. Órganos externos e internos, comportamiento, etc.

Aunque el sexo genotípico queda establecido en el momento de la fecundación, su manifestación fenotípica puede verse alterada por varios factores (medio ambiente) como ocurre con la manifestación de otros genotipos.

Génada primitiva indiferenciada

Gen SRY

Falta SRY

Testículo

Andrógenos

HAM

Sin andrógenos

Sin HAM

El desarrollo sexual humano es un proceso complejo que comprende la actuación de genes presentes en ambos sexos.

La diferenciación durante el desarrollo embrionario está dirigido por la actividad o no del gen SRY (normalmente presente en la región diferencial del cromosoma Y). Si el gen SRY no está presente o está inactivado, el camino obligatorio es el femenino

Determinación del sexo

- > Un par de genes
- > Equilibrio génico
- > Haplodiploidía
- Bajo influencia del medio ambiente
- Inversión sexual
- Cromosomas sexuales o heterocromosomas
- ➤ **Equilibrio génico:** En Drosophila los machos deben poseer un cromosoma Y, pero lo que determina realmente el sexo es la proporción existente entre el número de cromosomas X y el número de juegos de autosomas.

Si X/A=0,5 es supermacho;

Si X/A=0,5 es macho;

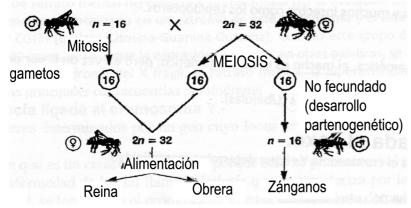
Si está entre 0,5 y 1 es intersexo;

Si es 1 es una hembra;

y si es superior a 1 es una superhembra.

> Haplodiploidía o determinación cariotípica.-

En los himenópteros sociales (abejas, avispas, hormigas, etc.) el sexo viene determinado por la dotación cromosómica.


Los individuos diploides son hembras procedentes un óvulo fecundado.

Los individuos haploides son machos (proceden de un óvulo sin fecundar).

Las hembras pueden ser fértiles (reinas) o estériles (obreras), dependiendo del tipo de alimentación que se les ha dado en la fase larvaria

Los machos o zánganos reciben todo su material genético de la reina madre, es decir que no tienen padre. Las hembras tienen 32 cromosomas y los machos sólo 16. Los machos producen esperma con un juego cromosomas que es el único que poseen, es decir que no tiene lugar la meiosis. Todos los espermatozoides son genéticamente idénticos a menos que ocurra una mutación. Las hembras, tanto las obreras como las reinas reciben la mitad de sus cromosomas de la madre y la otra mitad del padre.

Las hijas resultantes del mismo padre comparten ¾ de sus genes, es decir que están más emparentadas con sus hermanas que con su madre

Ambiente

El individuo posee información genética para desarrollarse como macho o como hembra, el ambiente es quien decide cuál de las dos informaciones genéticas se lleva a cabo.

En el caso del gusano marino Boniella viridis. El sexo va a depender del lugar en el que se coloquen las larvas que nacen de un óvulo fecundado.

Si nadan libremente y luego se fijan a las rocas, lo hacen corno hembras.

Si se posan en las trompas de la hembra se desarrollan como machos parásitos (mucho más pequeños que *las* hembras)

Si experimentalmente se crían larvas en el agua sin hembras pero se adiciona extracto de trompa, las larvas se desarrollan como machos, se piensa que la trompa de la hembra-posee sustancias masculinizantes.

Otro caso es el de los grandes lagartos (Cocodrilos y caimanes).

Las hembras-depositan sus huevos en-zonas-pantanosas en grandes acumulo

Los huevos darán lugar a individuos masculinos o femeninos en función de la temperatura de incubación. Si es superior a 272C se desarrollan machos si es inferior hembras.

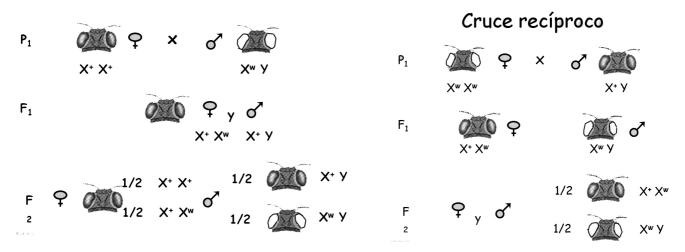
> Determinación cromosómica

Existen dos tipos de cromosomas: autosomas (no intervienen en la determinación del sexo) y heterocromosomas (cromosomas sexuales).

Existe un sexo homogamético y otro heterogamético.

- Sistema XX-XY: XX: hembra; XY: macho.
- Sistema ZZ-ZW: El sexo homogamético es el macho.
- Sistema XX-X0: El sexo heterogamético tiene un único cromosoma sexual.
- ➤ **Equilibrio génico:** En Drosophila los machos deben poseer un cromosoma Y, pero lo que determina realmente el sexo es la proporción existente entre el número de cromosomas X y el número de juegos de autosomas.
 - Si X/A=0,5 es supermacho;
 - Si X/A=0,5 es macho;
 - Si está entre 0,5 y 1 es intersexo;
 - Si es 1 es una hembra;
 - y si es superior a 1 es una superhembra.

> Inversión sexual


El sexo depende del número de machos y hembras existentes en la población, independientemente de los heterocromosomas

Herencia ligada el sexo

Se llama **herencia ligada al sexo** a la transmisión de los genes situados en los segmentos diferenciales de los cromosomas sexuales

Herencia ligada el cromosoma X u hologénica Herencia ligada al cromosoma Y u holándrica

Herencia ligada al cromosoma X

El gen se localiza sobre la zona diferencial del cromosoma X

Los individuos del sexo masculino como sólo tienen un cromosoma X, llevarán un sólo alelo, por la se dice que son hemicigóticos

Los del sexo femenino sólo uno de los dos alelas es activo (compensación génica), pero al haber dos cromosomas X , un gen se puede encontrar en homocigosis o en heterocigosis El cromosoma X inactivo se ve en las células durante la interfase como heterocromatina adherida a la envoltura nuclear (corpúsculo de Barr) o en los leucocitos como el llamado palillo de tambor

Se calcula en la especie humana *unos* 120 *genes* distintos ligados al cromosoma Destacan por su relativa frecuencia dos genes: *El daltonismo y la hemofilia*

El daltonismo es una anomalía hereditaria recesiva que dificulta la visión de los colores, sobre todo confunden el roja y el verde

La hemofilia es también una anomalía hereditaria recesiva pero con consecuencias más importantes, el hemofílico tiene dificultades en la coagulación de la sangre. A nivel molecular la hemofilia es una alteración de las reacciones que conducen a la formación de fibrina.

Parece que las mujeres no la padecen, pues la presentación de este gen en homocigosis es letal (muerte durante el desarrollo embrionario)

Una alteración génica relacionada -con el cromosoma X es **el síndrome de X Frágil**; Según estudios recientes, la incidencia del **síndrome de X Frágil** es de 1 varón afectado por cada 4.000 nacimientos y una mujer afectada por cada 6.000 nacimientos; una portadora por cada 260 y *un* portador por cada 800: Es una de las primeras causas de retraso mental hereditario y se manifiesta por la mutación de un gen ligado al cromosoma X, el gen mutado se encuentra localizado en el extremo de este cromosoma y el defecto en este gen es una repetición del *trinucleótido CGGn* (triplete Citosina-Guanina-Guanina), Cuando este grupo de tres nucleótidos se expande (se repite) más de 200 veces; se extingue la expresión de gen o, en otras palabras, se *apaga el gen*, produciéndose así lo que se conoce como síndrome del X frágil. El retraso mental, la hiperactividad y los problemas de atención se destacan como las principales consecuencias del síndrome

Herencia ligada al cromosoma Y_.

Caracteres determinados por **un** gen cuyo locus se sitúa en la porción no homólogadel cromosoma Y Se dice que es un carácter holándrico porque sólo se presenta en el sexo masculino.

Una enfermedad de la piel llamada ictiosis que se caracteriza por la formación de escamas y cerdas (ictiosis) en la piel, se localiza en el cromosoma Y, pasa directamente de padres a hijos varones.

El gen que determina hipertricosis, se manifiesta por la aparición de pelos abundantes y largos es el pabellón auditivo externo y también se localiza en el cromosoma Y

Herencia Influida por el sexo.-

Algunos genes situados en autosomas se expresan de manera distinta según se trate de uno u otro sexo Generalmente este distinto comportamiento se debe a la acción de las hormonas sexuales masculinas.

Son ejemplos, la calvicie, la longitud del dedo índice (el dedo índice más corto que el anular es dominante en los hombres y recesivo en las mujeres) y el mechón de pelo blanco